Zosuquidar 3HCl

Synonyms: LY335979 3HCl, RS 33295-198 3HCl, D06387 3HCl

Zosuquidar 3HCl is a potent modulator of P-glycoprotein-mediated multi-drug resistance with Ki of 60 nM in a cell-free assay. Phase 3.

Zosuquidar 3HCl Chemical Structure

Zosuquidar 3HCl Chemical Structure

CAS: 167465-36-3

Selleck's Zosuquidar 3HCl has been cited by 32 publications

Purity & Quality Control

Batch: Purity: 99.98%
99.98

Choose Selective P-gp Inhibitors

Cell Data

Cell Lines Assay Type Concentration Incubation Time Formulation Activity Description PMID
CCRF-CEM/VCR1000 Function assay 240 secs Inhibition of P-glycoprotein-mediated daunorubicin efflux from human CCRF-CEM/VCR1000 cells after 240 secs by FACS flow cytometric analysis, IC50=0.05888μM 22452412
DAOY qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for DAOY cells 29435139
SJ-GBM2 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SJ-GBM2 cells 29435139
A673 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for A673 cells 29435139
SK-N-MC qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-MC cells 29435139
NB-EBc1 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB-EBc1 cells 29435139
SK-N-SH qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for SK-N-SH cells 29435139
NB1643 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for NB1643 cells 29435139
LAN-5 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for LAN-5 cells 29435139
BT-12 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for BT-12 cells 29435139
OHS-50 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for OHS-50 cells 29435139
RD qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for RD cells 29435139
MG 63 (6-TG R) qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for MG 63 (6-TG R) cells 29435139
Rh30 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh30 cells 29435139
Rh41 qHTS assay qHTS of pediatric cancer cell lines to identify multiple opportunities for drug repurposing: Primary screen for Rh41 cells 29435139
Click to View More Cell Line Experimental Data

Biological Activity

Description Zosuquidar 3HCl is a potent modulator of P-glycoprotein-mediated multi-drug resistance with Ki of 60 nM in a cell-free assay. Phase 3.
Targets
P-gp [1]
(Cell-free assay)
60 nM(Ki)
In vitro
In vitro LY335979 competitively inhibits equilibrium binding of [3H]vinblastine to Pgp by blocking [3H]azidopine photoaffinity labeling of the Pgp in CEM/VLB100 plasma membranes. [1] LY335979 alone shows the cytotoxicity to drug-sensitive and MDR cell lines with IC50 ranging from 6 μM-16 μM and produces its ability to completely reverse the resistance of the oncolytics (vinblastine, doxorubicin, or etoposide) to the MDR cell lines P388/ADR, MCF7/ADR, 2780AD, or UCLA-P3.003VLB at concentration of 0.1 and 0.5 μM. [1] LY335979 significantly restores drug sensitivity in P-gp-expressing leukemia cell lines including K562/HHT40, K562/HHT90, K562/DOX and HL60/DNR, and enhances the cytotoxicity of anthracyclines (daunorubicin, idarubicin, mitoxantrone) and gemtuzumab ozogamicin (Mylotarg) in primary AML blasts with active P-gp. [2] A latest paper indicates that LY335979 completely inhibits apically directed transport of (Z)-endoxifen in the ABCB1-transduced cells. [3]
Kinase Assay ATPase Assay
P-Glycoprotein ATPase activity is measured by the liberation of inorganic phosphate from ATP. The assay is measured in a 96-well plate for 90 min at 37 °C. Membranes (8 μg-10 μg protein) are incubated in a total volume of 100 μL of buffer A containing 5 mM sodium azide, 1 mM ouabain, 1 mM EGTA, 3 mM ATP, an ATP regenerating system composed of 5 mM phosphoenolpyruvate, and 3.6 units/mL pyruvate kinase in the presence and absence of 1 mM sodium vanadate. Pgp-ATPase activity is defined as the vanadate-sensitive portion of the total ATPase activity. Plates are read 3 minutes after the addition of the detection solution. The absorbance is measured at 690 nm by a microtiter dish reader. A phosphate standard curve is used to calculate the μmol of phosphate formed. Samples are measured in triplicate.
Cell Research Cell lines CEM/VLB100, P388/ADR, MCF7/ADR, 2780AD, and UCLA-P3.OO3VLB cells
Concentrations 0.05 μM to 5 μM
Incubation Time 72 hours
Method Cell viability is determined using a modified 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide dye reduction method. Cells are harvested during logarithmic growth phase, and seeded in 96-well plates. The cells are then cultured for 72 hours in the presence of oncolytics with or without modulators. MCF-7 and MCF-7/ADR cells are incubated 24 hours before the addition of the drug with and without the LY335979. LY335979 is prepared as 2 mM DMSO stocks and added to wells to give final concentrations ranging from 0.05 to 5 μM. After 72 hours, 20 μL of freshly prepared 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (5 mg/mL in Dulbecco's PBS) is added to each well and incubated for 4 hours in a 37 °C incubator containing 5% CO2. Cells are pelleted in a Sorvall RT6000B centrifuge, 70 μL of medium is carefully removed from each well, and 100 μL of 2-propanol/0.04 N HC1 is added. Cells are resuspended 5-10 times with a Multipipettor or until no particulate matter is visible. Plates are immediately read on a Titertek Multiskan MCC/340 microplate reader Flow Laboratories with a test wavelength of 570 nm and a reference wavelength of 630 nm. Controls are measured in quadruplicate and modulators are measured in duplicate. Cytotoxicity analyses are also performed using the CeliTiter 96 AQueous assay kit.
In Vivo
In vivo
Animal Research Animal Models P388 or P388/ADR cells are implanted by i.p. injection into female BDF1 mice.
Dosages ≤30 mg/kg
Administration Administered via i.p. and i.v.

Chemical lnformation & Solubility

Molecular Weight 636.99 Formula

C32H31F2N3O2.3HCl

CAS No. 167465-36-3 SDF Download Zosuquidar 3HCl SDF
Smiles C1CN(CCN1CC(COC2=CC=CC3=C2C=CC=N3)O)C4C5=CC=CC=C5C6C(C6(F)F)C7=CC=CC=C47.Cl.Cl.Cl
Storage (From the date of receipt)

In vitro
Batch:

DMSO : 127 mg/mL ( (199.37 mM); Moisture-absorbing DMSO reduces solubility. Please use fresh DMSO.)

Water : 23 mg/mL

Ethanol : Insoluble


Molecular Weight Calculator

In vivo
Batch:

Add solvents to the product individually and in order.


In vivo Formulation Calculator

Preparing Stock Solutions

Molarity Calculator

Mass Concentration Volume Molecular Weight

In vivo Formulation Calculator (Clear solution)

Step 1: Enter information below (Recommended: An additional animal making an allowance for loss during the experiment)

mg/kg g μL

Step 2: Enter the in vivo formulation (This is only the calculator, not formulation. Please contact us first if there is no in vivo formulation at the solubility Section.)

% DMSO % % Tween 80 % ddH2O
%DMSO %

Calculation results:

Working concentration: mg/ml;

Method for preparing DMSO master liquid: mg drug pre-dissolved in μL DMSO ( Master liquid concentration mg/mL, Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug. )

Method for preparing in vivo formulation: Take μL DMSO master liquid, next addμL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O, mix and clarify.

Method for preparing in vivo formulation: Take μL DMSO master liquid, next add μL Corn oil, mix and clarify.

Note: 1. Please make sure the liquid is clear before adding the next solvent.
2. Be sure to add the solvent(s) in order. You must ensure that the solution obtained, in the previous addition, is a clear solution before proceeding to add the next solvent. Physical methods such
as vortex, ultrasound or hot water bath can be used to aid dissolving.

Tech Support

Answers to questions you may have can be found in the inhibitor handling instructions. Topics include how to prepare stock solutions, how to store inhibitors, and issues that need special attention for cell-based assays and animal experiments.

Handling Instructions

Tel: +1-832-582-8158 Ext:3
If you have any other enquiries, please leave a message.

* Indicates a Required Field

Please enter your name.
Please enter your email. Please enter a valid email address.
Please write something to us.
Tags: buy Zosuquidar 3HCl | Zosuquidar 3HCl supplier | purchase Zosuquidar 3HCl | Zosuquidar 3HCl cost | Zosuquidar 3HCl manufacturer | order Zosuquidar 3HCl | Zosuquidar 3HCl distributor