Category

Archives

Inhibition of JNK-mediated autophagy enhances NSCLC cell sensitivity to mTORC1/2 inhibitors

As the activation of autophagy contributes to the efficacy of many anticancer therapies, deciphering the precise role of autophagy in cancer therapy is critical. Here, we report that the dual mTORC1/2 inhibitors PP242 and OSI-027 decreased cell viability but did not induce apoptosis in the non-small cell lung cancer (NSCLC) cell lines H460 and A549. PP242 induced autophagy in NSCLC cells as demonstrated by the formation of massive vacuoles and acidic vesicular organelles and the accumulation of LC3-II. JNK was activated by PP242, and PP242-induced autophagy was blocked by inhibiting JNK pathway with SP600125 or JNK siRNA, suggesting that JNK activation is required for the mTORC1/2 inhibitor-mediated induction of autophagy in NSCLC cells. Inhibiting JNK or autophagy increased the sensitivity of H460 cells to mTORC1/2 inhibitors, indicating that JNK or autophagy promoted survival in NSCLC cells treated with mTORC1/2 inhibitors. Together, these data suggest that combining mTORC1/2 inhibitors with inhibitors of JNK or autophagy might be an effective approach for improving therapeutic outcomes in NSCLC.

Related Products

Cat.No. Product Name Information
S2624 OSI-027 OSI-027 (ASP4786, CERC 006, AEVI-006) is a selective and potent dual inhibitor of mTORC1 and mTORC2 with IC50 of 22 nM and 65 nM in cell-free assays, and more than 100-fold selectivity observed for mTOR than PI3Kα, PI3Kβ, PI3Kγ or DNA-PK. OSI-027 induces autophagy in cancer cells.

Related Targets

mTOR