Category

Archives

Recent Advances of PI3 Kinase Inhibitors: Structure Anticancer Activity Relationship Studies

Phosphatidyl-inositol-3-kinase (PI3K) has emerged as a potential therapeutic target for the development of novel anticancer drugs. The dysregulation of PI3K has been associated with many human malignancies such as breast, colon, endometrial, brain, and prostate cancers. The PI3K kinases in their different isoforms namely α, β, δ, and γ, encode PIK3CA, PIK3CB, PIK3CD, and PIK3CG genes. Specific gene mutation or overexpression of the protein is responsible for therapeutic failure of current therapeutics. Recently, various PI3K signaling pathway inhibitors have been identified which showed promising therapeutic results by acting on specific isoforms of the kinase too. Several inhibitors containing medicinally privileged scaffolds like oxadiazole, pyrrolotriazine, quinazoline, quinazolinone, quinazoline-chalcone hybrids, quinazoline-sulfonamide, pyrazolochalcone, quinolone hydroxamic acid, benzofuropyridinone, imidazopyridine, benzoxazines, dibenzoxanthene, indoloderivatives, benzimidazole, and benzothiazine derivatives have been developed to target PI3K pathway and/or a specific isoform. The PI3K inhibitors which are under clinical trial studies include GDC-0032, INK1117 for PI3K-α, and AZD8186 for PI3K-β. This review primarily focuses on the structural insights and structure anticancer activity relationship studies of recent PI3K inhibitors including their clinical stages of development and therapeutic values.

Related Products

Cat.No. Product Name Information
S7103 Taselisib (GDC 0032) Taselisib (GDC 0032, RG7604) is a potent, next-generation β isoform-sparing PI3K inhibitor targeting PI3Kα/δ/γ with Ki of 0.29 nM/0.12 nM/0.97nM, >10 fold selective over PI3Kβ.

Related Targets

PI3K