Category

Archives

Synthesis, structural characterization, DFT calculations, molecular docking, and molecular dynamics simulations of a novel ferrocene derivative to unravel its potential antitumor activity

In this article, we describe a set of subsequent five-steps chemical reactions to synthesize a ferrocene derivative named 1-(5-(diphenylphosphaneyl)cyclopenta-1,3-dien-1-yl)ethyl)imino)-1,3-dihydroisobenzofuran-5-yl)methanol (compound 10). Structural characterization of 10 and its intermediate products was also performed and reported to attest to their formation. A molecular docking study was performed to propose the novel synthesized ferrocene derivative (10) as a potential antitumor candidate targeting the mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1. The computed docking score of (10) at -9.50 kcal/mol compared to the native anticancer staurosporine at -8.72 kcal/mol postulated a promising anticancer activity. Also, molecular dynamics (MD) simulations were carried out for 500 ns followed by MM-GBSA-binding free energy calculations for both the docked complexes of ferrocene and staurosporine to give more deep insights into their dynamic behavior in physiological conditions. Furthermore, DFT calculations were performed to unravel some of the physiochemical characteristics of the ferrocene derivative (10). The quantum mechanics calculations shed the light on some of the structural and electrochemical configurations of (10) which would open the horizon for further investigation. HighlightsThe synthesis of a ferrocene derivative named 1-(5-(diphenylphosphaneyl)cyclopenta-1,3-dien-1-yl)ethyl)imino)-1,3-dihydroisobenzofuran-5-yl)methanol (compound 10) was described.Structural characterizations of ferrocene derivative (10) and its intermediate products were also performed.DFT calculations, molecular docking, molecular dynamics, and MM-GBSA calculations were carried out.Computational studies revealed the antitumor potential of ferrocene derivative (10) through targeting and inhibiting mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1.Communicated by Ramaswamy H. Sarma.

Related Products

Cat.No. Product Name Information
S1421 Staurosporine (STS) Staurosporine (STS) is a potent PKC inhibitor for PKCα, PKCγ and PKCη with IC50 of 2 nM, 5 nM and 4 nM, less potent to PKCδ (20 nM), PKCε (73 nM) and little active to PKCζ (1086 nM) in cell-free assays. Also shows inhibitory activities on other kinases, such as PKA, PKG, S6K, CaMKII, etc. Phase 3.

Related Targets

PKG ADC Cytotoxin PKC Antineoplastic and Immunosuppressive Antibiotics CaMK S6 Kinase PKA