Category

Archives

Targeting autophagy potentiates the anti-tumor effect of PARP inhibitor in pediatric chronic myeloid leukemia

Due to its potent cytotoxicity in BRCA-mutated tumors, synthetic lethality elicited by poly (ADP-ribose) polymerase (PARP) inhibitor gives renewed enthusiasm to researching and developing anti-cancer therapies. Chronic myeloid leukemia (CML) is a type of cancers that starts in certain blood-forming cells of the bone marrow. Here, we showed that poly (ADP-ribose) polymerase (PARP) inhibitor talazoparib could induce a concentration-dependent cytotoxicity in CML cells derived from pediatric patients. During talazoparib treatment, autophagy was markedly activated, which was confirmed by the accumulation of autophagosomes, decrease of SQSTM1 and up-regulation of LC3-II. Inhibition of autophagy by pharmaceutical inhibitor chloroquine or small-interfering RNA siATG5 significantly increased the cytotoxicity of talazoparib in pediatric CML cells and elicited synergistic anti-tumor effect in patient-derived xenograft model. Our data demonstrated that autophagy played a cyto-protective role in talazoparib-treated pediatric CML and co-treatment with talazoparib and autophagy inhibitor could induce synergetic anti-tumor effect, providing novel insights for pediatric CML treatment.

Related Products

Cat.No. Product Name Information
S7048 Talazoparib (BMN 673) Talazoparib (BMN 673, LT-673) is a novel PARP inhibitor with IC50 of 0.57 nM for PARP1 in a cell-free assay. It is also a potent inhibitor of PARP-2, but does not inhibit PARG and is highly sensitive to PTEN mutation. Phase 3.

Related Targets

PARP