Category

Archives

Nano-Assembly of Quisinostat and Biodegradable Macromolecular Carrier Results in Supramolecular Complexes with Slow-Release Capabilities

Self-assembly of ionically charged small molecule drugs with water-soluble biodegradable polyelectrolytes into nano-scale complexes can potentially offer a novel and attractive approach to improving drug solubility and prolonging its half-life. Nanoassemblies of quisinostat with water-soluble PEGylated anionic polyphosphazene were prepared by gradient-driven escape of solvent resulting in the reduction of solvent quality for a small molecule drug. A study of binding, analysis of composition, stability, and release profiles was conducted using asymmetric flow field flow fractionation (AF4) and dynamic light scattering (DLS) spectroscopy. Potency assays were performed with WM115 human melanoma and A549 human lung cancer cell lines. The resulting nano-complexes contained up to 100 drug molecules per macromolecular chain and displayed excellent water-solubility and improved hemocompatibility when compared to co-solvent-based drug formulations. Quisinostat release time (complex dissociation) at near physiological conditions in vitro varied from 5 to 14 days depending on initial drug loading. Multimeric complexes displayed dose-dependent potency in cell-based assays and the results were analyzed as a function of complex concentration, as well as total content of drug in the system. The proposed self-assembly process may present a simple alternative to more sophisticated delivery modalities, namely chemically conjugated prodrug systems and nanoencapsulation-based formulations.

Related Products

Cat.No. Product Name Information
S1096 Quisinostat (JNJ-26481585) 2HCl Quisinostat (JNJ-26481585) 2HCl is a novel second-generation HDAC inhibitor with highest potency for HDAC1 with IC50 of 0.11 nM in a cell-free assay, modest potent to HDACs 2, 4, 10, and 11; greater than 30-fold selectivity against HDACs 3, 5, 8, and 9 and lowest potency to HDACs 6 and 7. Phase 2.

Related Targets

HDAC